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ABSTRACT

Keywords Core-needle biopsy is employed to determine
breast cancer; histological biomarkers for selecting neoadjuvant
neoadjuvant chemotherapy; chemotherapy (NAC) in breast cancer (BC). Mitochondrial
mitochondrial DNA; metabolism is correlated with tumor progression in BC.
TP53 mutation; Three mitochondrial DNA (mtDNA) biomarkers in core-
oxidative stress needle biopsy tissues were implicated in predicting NAC

response and survival in BC patients. One-hundred
ARTICLE INFO newly-diagnosed patients with BC were recruited and
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followed-up for at least three years. Core-needle biopsy
was applied for sampling BC to evaluate mtDNA copy
number, mtDNA oxidation, D-loop mutations, and
TP53 mutations. Histologically-related biomarkers,
including tumor grade and the immunochemical status
of estrogen, progesterone, and human epidermal growth
factor 2 receptors, were surveyed. Tumor size was
measured through ultrasound before and after NAC, and
the pathology of the residual tumor was evaluated after
the operation. The results revealed that only 40 patients
with BC completed the 3 to 6-year follow-up. A greater
number of mtDNA D-loop mutations (B = 46.131, p =
0.001) and lower mtDNA oxidation (3 = -10.821, p =
0.001) in core-needle biopsy significantly predicted poor
tumor reduction after NAC. However, the absence of
mtDNA D-loop mutations in core-needle biopsy samples
indicated long survival in BC patients (p = 0.021).
Interestingly, a higher copy number (> 580/cell), lower
oxidation (< 0.25), and no D-loop mutations in mtDNA
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can be identified as reliable surrogates
to predict good survival in patients
with triple-negative BC. In conclusion,
mtDNA biomarkers from core-needle
biopsy can provide information to
predict the response to NAC and survival
in patients with BC.

Introduction

Mitochondria have emerged as key players
in tumorigenicity; alterations in mitochondrial
DNA (mtDNA) correlate with breast cancer (BC)
pathogenesis. Germline and somatic mtDNA
mutations are the most commonly mutated genes
in BC [1]. Tseng et al. [2] reported that significant
changes in mtDNA copy number, mtDNA D-loop
mutations, and mtDNA common deletions were
present in BC tissue as compared with adjacent
healthy tissue. Moreover, mitochondrial dysfunction
contributes to the etiology of cancer-related fatigue
after chemotherapy (CT) [3]. In BC, the efficacy of
CT depends on changes in mitochondrial biogenesis,
including alterations in mtDNA copy number and
mtDNA D-loop mutations [4-8]. Oxidative stress in
mtDNA, indirectly measured by detecting 8-hydroxy-
2'-deoxyguanosine (8-OHdG) accumulation in
mtDNA, can predict the response to CT [9,10].

Core-needle biopsy, in addition to surgical
pathology, provides critical information on
histological biomarkers in BC before neoadjuvant
chemotherapy (NAC) to reduce the tumor burden
[11]. In the present study, biological information
of mtDNA biomarkers, namely, mtDNA oxidation,
mtDNA copy number, and mtDNA D-loop mutation,
was retrieved from BC tissue via core-needle biopsy
to evaluate the power of outcome prediction in BC
patients after NAC.

Materials and Methods

Patients

One-hundred newly-diagnosed patients with
BC who were not treated with CT or radiotherapy

were recruited from the BC clinic at Changhua
Christian Hospital, Taiwan, from 2014 to 2018.
The demographic data, including average age;
clinical subtype (luminal A, luminal HER2, HER2
overexpression, luminal B, and triple-negative BC
[TNBC]); clinical stage; TNM stage; histological
grade of the tumor; and immunohistochemical
staining of estrogen receptor (ER), progesterone
receptor (PR) ,and human epidermal growth factor
receptor 2 (HER2) are shown in Table 1. Clinical
subtypes were classified on the basis of the St.
Gallen Consensus 2011 [12]. All patients underwent
mastectomy or lumpectomy to evaluate the effect
of NAC and were clinically followed-up after at
least three years. The study was approved by the
Institutional Review Board of Changhua Christian
Hospital (No. 130810) and was conducted according
to the principles of the Declaration of Helsinki.

Staining core-needle biopsy tissue from
patients with BC

Core-needle biopsy tissues obtained from
patients with BC before NAC were fixed in
formaldehyde and embedded in paraffin blocks.
The expressions of ER, PR, and HER2 were
determined using immunohistochemical staining
of 4-um sections of paraffin-embedded tissue,
as described previously [13]. Briefly, the tissue
sections were deparaffinized, and antigen retrieval
was performed in citrate buffer. The sections were
covered with cling film and heated at 100°C for
10 min. Endogenous peroxides were inactivated
with 3% H,0, in methanol for 15 min. The slides
were blocked with blocking buffer (3% bovine
serum albumin in phosphate-buffered saline)
for 30 min, incubated with primary monoclonal
antibodies against ER, PR, and HER2 (Thermo
Fisher Scientific, Pittsburgh, PA) overnight at
4°C, washed with phosphate-buffered saline with
Tween-20, and incubated with a peroxidase-
conjugated goat anti-mouse antibody for one hour.
After 3,3’-Diaminobenzidine (DAB) staining, the
slides were counterstained with hematoxylin and
mounted with glass coverslips. Three specimens
were prepared and examined for each sample.
We randomly selected four areas on each slide to



Table 1. Demographic data of patients with breast cancer
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Demographic Values®

Number 40
Age (years) 56+9
Clinical subtype, n (%)

Luminal A 18 (45)

Luminal HER2 3(8)

HER2 over-expression 5(12)

Luminal B 4 (10)

TNBC 10 (25)
Stage, n (%)

1 1(3)

2 25 (62)

3 12 (30)

4 2 (5)
TNM (range)

Tumor size (1-4) 2.4+0.7

Lymph nodes (0-3) 0.8+0.8

Metastasis (0—1) 0.1 £0.2
Grade (range)

1-3 2.4+0.6
Histochemical stain (range)

ER (0-3) 1.8+1.3

PR (0-3) 1.4+£13

HER2 (0-3) 1.6 1.2
TP53 mutation (range)

0-2 02+04
Chemotherapy regime

CT-A FEC/D’

CT-B DE/DH°®

CT-C DP/FDL/CMF*
Cycle number of chemotherapy mtDNA biomarkers 6.9+1.6

mtDNA copy number (/cell)
mtDNA oxidation
mtDNA D-loop mutation

580 (186-2,693)
0.25 (0.03-1.38)
<1(0-8)

“Values were presented as mean =+ standard deviation, number (%), or median (min—-max).
"FEC/D: 5-fluorouracil, epirubicin, cyclophosphamide followed by docetaxel.

‘DE/DH: docetaxel, epirubicin followed by docetaxel, Herceptin.

‘DP/FDL/CMF: docetaxel, perjeta followed by 5-fluorouracil, docetaxel, leucovorin and cyclophosphamide, methotrexate,

and 5-fluorouracil.

CT-A: chemotherapy-A; CT-B: chemotherapy-B; CT-C: chemotherapy-C; ER: estrogen receptor; HER2: human epidermal
growth factor receptor 2; mtDNA: mitochondrial DNA;; PR, progesterone receptor; TNBC, triple-negative breast cancer.
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evaluate staining intensity using a semiquantitative
scoring system based on the percentage of
positively-stained cells as follows: grade 0 for no
expression, grade 1 for low expression (< 10%
positive cells), grade 2 for median expression (10%—
75% positive cells), and grade 3 for high expression
(> 75% positive cells). Histological grading of BC
was performed using hematoxylin and eosin staining
and assessed using the Nottingham grading system
[14].

Measurement of mtDNA copy number
in leukocytes and BC tissue obtained
through core-needle biopsy

The mtDNA copy number was analyzed in
tissue samples from core-needle biopsy. DNA
was extracted using a Gentra Puregene DNA Kit
(Qiagen, Germany). In brief, the NDI gene (primers
F 5'-AACATACCCATGGCCAACCT-3" and R 5'-A
GCGAAGGGTTGTAGTAGCCC-3") in mtDNA
and the B-globin gene (F 5'-GAAGAGCCAAGGA
CAGGTAC-3' and R 5'-CAACTTCATCCACGT TC
ACC-3’) in nuclear DNA were amplified using a
LightCycler 480 Instrument (Roche, Mannheim,
Germany). The analysis was conducted using a
previously-described protocol with some modifications
[15,16]. The mtDNA content was calculated using the
formula 2 % 2 (p-globin cycle threshold (Ct) -ND1 Ct) [16]

Measuring mtDNA oxidation in core-
needle biopsy tissue

DNA was treated with 1 U of human §-oxoguanine
DNA glycosylase (hOGG1) at 37°C for 2 hr, after
which 8-OHdG was removed to form an abasic site.
The mitochondrial NDI gene primers 5'-AACATA
CCCATGGCCAACCT-3" and 5'-AGCGAAGGGTT
GTAGTAGCCC-3" were subsequently used to
detect mtDNA damage by LightCycler 480 Real-
Time PCR (Roche, Mannheim, Germany). Oxidative
mtDNA damage was determined by calculating the
difference between Ct values (ACt) before and after
treatment with hOGGI1. The greater the ACt, the
greater the abundance of 8-OHdG and the greater
the degree of oxidative mtDNA damage [17].

Analysis of somatic mutations in the
mtDNA D-loop

Primers mtL16190 (5'-CCCCATGCTTACAAG
CAAGT-3") and mtH602 (5'- GCTTTGAGGAGG
TAAGCTAC-3") were used to amplify mtDNA
D-loop fragments. PCR was performed using a MJ
Research Thermal Cycler. Somatic mutations were
confirmed through the sequencing of PCR products
using a BigDye Terminator v1.1 cycle sequencing
kit (Applied Biosystems, Foster City, CA) and an
ABI 3130xl genetic analyzer. Somatic mutations
were identified through comparison with the mtDNA
D-loop sequences of leukocytes and core-needle
biopsy tissue.

Somatic mutation analyses of the exons
of TP53

Mutations in exons 5-8 of TP53 constitute 94.2%
of all somatic mutations in the TARC database,
version R11 [18]. Two primer pairs, TP53-5F (5'-GT
TTCTTTGCTGCCGTCTT-3") and TP53-6R (5'-AC
TGACAACCACCCTTAACC-3") and TP53-7F
(5'-ATCTTGGGCCTGTGTTAT-3") and TP53-8R
(5'-AGAGGCAAGGAAAGGTGATA-3'"), were used
to amplify exons 5-8 of TP53. The analysis methods
were performed according to the aforementioned
protocol in the MJ Research Thermal Cycler PCR
and DNA sequencing.

Response to NAC

The clinical response was evaluated through
physical examination and 2D ultrasonography on
the basis of the Response Evaluation Criteria in
Solid Tumors (RECIST 1.1). Four types of clinical
responses were defined as follows: complete response
(CR), for complete disappearance of all known
lesions; partial response (PAR), for at least a 30%
decrease in the sum of the longest diameter of the
target lesion; progressive disease (PD), for at least a
20% increase in the sum of the longest width of the
primary lesion; and stable disease (SD), for neither
sufficient shrinkage to qualify for CR or PAR nor
sufficient increase to qualify for PD [19]. Pathologic
complete response (pCR) was defined as the absence
of tumor cells from dissected BC tissue after NAC.



Statistical analyses

The chi-square, likelihood ratio, or Fisher’s
exact tests were used to identify potential mtDNA
biomarkers for predicting the clinical and pathological
responses to NAC matched with biomarkers in tumor
pathology (Tables 2—4). To evaluate the potential of
mtDNA biomarkers for predicting tumor reduction
after CT, a generalized linear model (GLM) was used,
with adjustment for confounding factors, including
the neoadjuvant panel, cancer stage, TNM, tumor
grade, TP53 mutation, and immunohistochemical
staining (Table 5). Survival analysis was performed
using the Kaplan—Meier method, and differences
among subgroups were evaluated using the log-rank
test (Figure 1). All statistical analyses were performed
using the SPSS software package (version 17; SPSS,
Chicago, IL), and a p value < 0.05 was considered
statistically significant.

Results

Only 40 patients with BC completed at least
three years of follow-up without withdrawing
from this clinical study. With respect to clinical
classification, a higher prevalence was found for
luminal A and TNBC, at 45% and 25%, respectively.
Approximately 92% of the patients had clinical
stage II-1II BC. For most patients, the histological
grade was moderate. The average intensity for ER,
PR, and HER?2 staining was 1.4 + 1.3 to 1.8 £ 1.3,
and the average TP53 mutation intensity was 0.2
+ 0.4. We used three CT protocols, including the
CT-A panel (FEC/D: 5-fluorouracil, epirubicin,
cyclophosphamide followed by docetaxel), CT-B
panel (DE/DH: docetaxel, epirubicin followed by
docetaxel, herceptin), and CT-C panel (DP/FDL/
CMF: docetaxel, perjeta followed by 5-fluorouracil,
docetaxel, leucovorin and cyclophosphamide,
methotrexate, and 5-fluorouracil). The average
number of cycles was 6.9 + 1.6. The median values
for mtDNA copy number and mtDNA oxidation
were 580/cell and 0.25, respectively (Table 1).
The mtDNA copy number and D-loop mutations
were not correlated with clinical or histological
biomarkers; however, increased mtDNA oxidation

Mitochondrial DNA Biomarkers in Breast Cancer Therapy

was correlated with increased tumor grade (p =
0.038) (Table 2). Unfortunately, we failed to reveal
any interaction of mtDNA biomarkers with other
recognized prognostic factors, including 7P53
mutations, ER, PR, and HER?2 status.

Clinical response analysis revealed that clinical
or histological biomarkers did not predict the
impact of the clinical response after NAC. However,
pathological response analysis revealed that patients
aged less than 50 years (p = 0.042) or who chose the
CT-B panel of NAC (DE/DH: docetaxel, epirubicin/
docetaxel, herceptin) (p = 0.001) had a high
prevalence of pCR in the pathology survey (Table
3). In a correlation study between pCR and three
mtDNA biomarkers, BC patients without mtDNA
D-loop mutations had 18% pCR after NAC; however,
BC patients with mtDNA D-loop mutations had 0%
pCR after NAC (p = 0.023, Table 4). No significant
difference was found between mtDNA copy number/
mtDNA oxidation and clinical/pathological responses
(Table 4). However, using quantitative GLM, clinical
stage, tumor size, mtDNA oxidation (p = 0.001),
and mtDNA D-loop mutations (p = 0.001) were
found to significantly predict the response of BC
patients after NAC. According to B, an increase of
one unit of mtDNA oxidation predicts 46.1% tumor
reduction after NAC; an increase of one mtDNA
D-loop mutation predicts 10.8% tumor growth after
NAC (Table 5). Sequencing of 7P53 revealed 19
reported loci of mutations, and ¢.524G>A/c.818G>A
mutations appeared repetitively (Table 6). A total of
13 homoplasmic or heteroplasmic mtDNA D-loop
mutations were detected, of which homoplasmic
c.441C>G has been reported for the first time in
BC (Table 7). Interestingly, 4/13 mtDNA D-loop
mutations had a poly-C cluster at np 303-309.

In the survival study, mtDNA D-loop mutations,
but not copy number or oxidation, could predict a
reduced survival rate (p = 0.021) (Figure 1A-1C).
Interestingly, patients with TNBC, with a higher
mtDNA copy number (> 580), lower mtDNA
oxidation (< 0.25), and no mtDNA D-loop mutations,
had a 100% survival rate within three years after
NAC (Figure 1D-1F).
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Table 4. Relationships between mitochondrial DNA biomarkers in core-needle biopsy and clinical and pathological
responses after neoadjuvant chemotherapy

; Clinical response Pathological response
mtDNA biomarkers 5 N 5 N
CR+PAR (n) PD+SD (n) X p value® No-pCR (n) pCR (n) X p value
mtDNA copy number
<580 8 12 0.102  0.749 16 4 4.444  0.106
> 580 9 11 20
mtDNA oxidation
<0.25 8 13 0.351  0.554 19 2 0.111 1.000
>0.25 9 10 17 2
mtDNA D-Loop mutation
0 10 12 0.175  0.676 18 4 5.145  0.023"
>0 7 11 18

'p < 0.05 is considered a statistically significant difference.

“The p value calculated using chi-square, likelihood ratio, or Fisher’s exact tests.

CR: complete response; mtDNA: mitochondrial DNA; pCR: pathologic complete response; PD: progressive disease; PAR:
partial response; SD: stable disease.

Table 5. Predictive power of clinical, histological, and mtDNA biomarkers for tumor reduction (%) after neoadjuvant
chemotherapy

Tumor reduction (%)

Factors
L SE 95% CI p
Chemotherapy regime
CT-A -9.466 9.625 —28.330 to 9.398 0.325
CT-B 14.862 16.470 —17.418 to 47.141 0.367
CT-C 0
Cycles of CT 4.895 2.528 —0.060 to 9.850 0.053
Clinical/histologic biomarkers
Age —0.699 0.539 —1.756 to 0.358 0.195
Stage (1-4) 39.768 18.428 3.649-75.887 0.031"
Tumor size (1-4) -37.011 11.204 —58.971 to —15.051 0.001
Lymph node (0-3) -7.071 9.075 —24.859 t0 10.716 0.436
Metastasis (0—1) 47.245 20.403 7.255-87.235 0.021"
Grade (1-3) 7.828 9.996 —11.765 to 27.420 0.434
TP53 (0-2) -12.740 12.686 -37.603 to 12.124 0.315
ER (0-3) —-8.898 5.065 —18.825 to 1.030 0.079
PR (0-3) 6.430 5.232 —3.824 to 16.684 0.219
HER?2 (0-3) 8.888 5.079 —1.067 to 18.843 0.080
mtDNA biomarkers
mtDNA copy number —-0.002 0.012 —0.024 to 0.021 0.882
mtDNA oxidation 46.131 14.121 18.454-73.809 0.001"
mtDNA D-loop mutation -10.821 3.256 —17.201 to —4.440 0.001"

'p < 0.05 is considered a statistically significant difference.

CI: confidence interval; CT: chemotherapy; CT-A: chemotherapy-A; CT-B: chemotherapy-B; CT-C: chemotherapy-C;
ER: estrogen receptor; HER2: human epidermal growth factor receptor 2; mtDNA: mitochondrial DNA; PR: progesterone
receptor; SE: standard error.
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Discussion

This study contributes to our understanding of
mtDNA biomarkers in tissues obtained through core-
needle biopsy from patients with BC. Tseng et al. [20]
reported that mtDNA copy number, oxidative stress
in mtDNA, and somatic mtDNA D-loop mutations
in BC tissue can be correlated with patient outcomes
and survival but poorly-controlled in a panel of
NACs and pathologic biomarkers from needle biopsy.
In our previous study without information on NAC
or biomarkers from needle biopsy, the number of
somatic mtDNA D-loop mutations indicated poor
prognosis through a mechanism independent of
TP53 [21]. In the present study, with the addition of
information from panels of NACs and biomarkers
from needle biopsy, the number of mtDNA D-loop
mutations could predict not only the patient’s
survival but also the response to NAC. Moreover, we
revealed a new marker, mtDNA oxidation (8-OHdG-
related index), which is positively correlated with
the histological grade of BC and accurately predicts
tumor reduction after NAC. However, alterations
in mtDNA oxidation fail to predict short-term
survival outcomes in patients with BC. Notably, a
high mtDNA copy number (> 580/cell), low mtDNA
oxidation (< 0.25), and no mtDNA D-loop mutations
are good surrogates for long-term survival in patients
with TNBC.

MtDNA D-loop somatic mutations as
biomarkers

The D-loop is a noncoding region in mtDNA
that controls mtDNA replication [22]. Germline
and somatic mutations are risk factors involved in
the tumorigenesis and distal metastasis of BC [23,
24]. A report in 2020 on Malaysian women with BC
revealed somatic mutations detected in the mtDNA
D-loop, which correlated with genomic instability,
tumor initiation, and metastasis [25]. In a study
of familial BC, 72.7% of all mtDNA mutations
were in the D-loop where genomic instability was
also detected, predisposing individuals to cancer
initiation and progression [26]. In another study,
somatic mutations in the D-loop of mtDNA,
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especially heteroplasmy in the poly-C tract located
between nucleotides 303 and 315, known as D310,
correlated with mtDNA instability and early
progression of BC [27]. Our findings revealed that
mtDNA D-loop mutations, especially mutations in
the D310 region, can reliably predict poor survival
in patients with BC and indicate a lower pCR
after NAC. In stage III colon cancer, fluorouracil-
based NAC was only beneficial for patients without
D-loop mutations [28]. However, in head and neck
squamous cell carcinoma, D-loop mutations do not
predict patient survival or response to NAC [29,30].
Thus, although D-loop mutations are an index of
tumor progression, the tumor specificity of the
biomarker determines the response to NAC.

Biomarkers of mtDNA oxidation

The role of oxidative stress in predicting
BC initiation and progression is ambiguous [31].
Yuzefovych et al. [32] demonstrated that reduced
mtDNA oxidation or overexpression of h1OGG-1
suppresses tumorigenesis. In the present study, BC
patients with higher tumor grades (e.g., Grade III)
presented higher mtDNA oxidation levels in tumor
tissue than patients with lower grades (e.g., Grades
I and II). Our findings are consistent with those of
previous studies indicating that elevated oxidative
stress in mitochondria promotes tumor growth and
metastasis. NAC-associated oxidative stress in
tumor tissue was found to affect the response to
NAC [33]. Atukeren et al. [34] reported that patients
with BC experienced greater oxidative stress during
CT and increased serum levels of thiobarbituric
acid-reactive substances, total nitrite/nitrate, and
8-OHdG. Increasing oxidative stress through
UCP?2 inhibition sensitized BC cells to cisplatin or
tamoxifen [35]. In this study, an increase in mtDNA
oxidation predicted a good response to NAC,
probably due to the synergism between endogenous
oxidative stress produced in the mitochondria
and exogenous oxidative stress from NAC. Thus,
mtDNA oxidation robustly predicts the response to
NAC but cannot predict survival outcomes in BC
patients or rapid tumor growth after NAC.
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MtDNA copy number as a biomarker

The mtDNA copy number is a sensitive marker
of the cellular redox status, genomic modification,
and oxidant/antioxidant balance [15]. TNBC cell
lines demonstrate a high degree of variability in
mitochondrial dysfunction, including the metabolic
switch to glycolysis and reduced mtDNA content
[36,37]. Weerts et al. revealed that fewer than 350
mtDNA copies per cell predict poor prognosis
for metastasis in patients with BC [38]. In recent
years, we developed a mitochondrial transplantation
technique to increase the number of mitochondria
to suppress chemoresistance in BC. Transplanting
healthy mitochondria, including healthy mtDNA,
into BC cell lines, including MCF-7 and MDA-
MB-231, increased the susceptibility of both cell
lines to doxorubicin and paclitaxel by suppressing
Drp-1 phosphorylation and inducing the nuclear
translocation of apoptosis-inducing factor. However,
transplantation of dysfunctional mitochondria,
including mutant mtDNA (minic mtDNA
D-loop mutation), promoted glycolysis, reduced
mitochondrial respiration, and increased resistance
to CT [39]. In this study, alterations in mtDNA copy
number did not predict the response to NAC, but
high mtDNA content, low mtDNA oxidation, and the
absence of mtDNA D-loop mutation predicted good
prognosis, especially in patients with TNBC. These
results are consistent with reports indicating that the
functional or genetic heterogeneity of mitochondria
in BC can predict the risk of metastasis and
prognosis prediction and risk stratification [36, 40].

Limitations of the study

This study is based on a relatively small
sample size (N = 40) of patients with long-term
follow-up, which may limit the statistical power of
the findings and affect the robustness of the data.
This limitation could influence the thorough analysis
of the relationship between mtDNA biomarkers
and other pathogenic biomarkers (e.g., TP53, ER,

PR, and HER2), as well as the potential impact of
various CT regimens (e.g., CT-A, CT-B, and CT-C).
Furthermore, the data were derived from a single
institution, which may limit the generalizability of
the results. Larger, multi-center cohorts are needed
to provide more robust conclusions regarding the
reliability of BC biomarkers.

In conclusion, we found that three mtDNA
biomarkers identified using core-needle biopsy
samples from patients with BC before NAC could
predict clinical and pathological responses and
survival. MtDNA D-loop mutations are predictors
of the response to NAC and tumor progression
in patients with BC. Moreover, we identified that
greater mtDNA oxidation in BC is associated with
greater severity of tumorgenicity and is positively
correlated with tumor shrinkage after NAC but
fails to predict survival outcomes in patients with
BC. However, although the mtDNA copy number
in BC tissue does not predict the response to NAC,
it appears to be valuable in predicting survival
outcomes in patients with TNBC, especially those
with a high mtDNA copy number, low mtDNA
oxidation, and no mutations in the mtDNA D-loop.
Finally, these three mtDNA biomarkers can guide
physicians in predicting the response to NAC for
early monitoring of BC progression regardless of the
choice of CT.
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Table 6. TP53 mutations in core needle biopsy tissue from patients with breast cancer
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Nucleotide

Other mutations

change Amino acid Exon Mutation type N at same codon Reference
¢.380C>T p- S127F 5 missense 1 — Kato S et al., 2003 [41]
c.476C>A p- A159D 5 missense 1 — Guinee et al., 1995 [42]
c.489C>T p- Y163Y 5 silent 1 — McKenzie al., 1997 [43]
c.524G>A p- R175H 5 missense 2 — Hollstein et al., 1991 [44]
c.578A>T p- H193L 6 missense 1 — Neri et al., 1993 [45]
c.590T>A p.- VI97E 6 missense 1 — Konishi et al., 1993 [46]
c.600T>A p. N200K 6 missense 1 Lin Y et al., 1996 [47]
c.645T>G p. S215R 6 missense 1 — Taguchi et al., 1994 [48]
c.659A>G p. R175H 6 missense 1 — Bennett et al., 1991 [49]
c.733G>A p. G245S 7 missense 1 — Portier et al., 1992 [50]
c.743G>A p- R248Q 7 missense 1 — Hollstein et al., 1990 [51]
c.783T>A p. S261R 8 missense 1 — Kringen et al., 2005 [52]
c.817C>T p- R273C 8 missense 1 — Ishioka et al., 1991 [53]
c.818G>A p. R273H 8 missense 2 — Chiba et al., 1990 [54]
c.832C>T p. P278S 8 missense 1 — Hollstein et al., 1990 [51]
c.838A>G p. R280G 8 missense 1 — Sheu et al., 1992 [55]
c.839G>A p. R280K 8 missense 1 Ziegler et al., 1993 [56]
c.853G>A p- E285K 8 missense 1 — Osborne et al., 1991 [57]
c.913A>T p. K305* 8 nonsense 1 — Hollstein et al., 1991 [44]

Table 7. Somatic mitochondrial DNA D-loop mutations in core-needle biopsy samples from patients with breast cancer

np CRS :1(1)11:;?:(1:1 normal—tumor  function N Prev101tllslil};()r:ported References
249 A del A homo—hetero CR/HV2 1 Ovarian Liu et al., 2001 [58]
251 G G—A homo—homo CR/HV2 1 POLG/PEO muscle Del Bo et al., 2003 [59]
303-309 7C  7C—8C  homo—hetero = CR/CSB2 1 Multiple tumor types  Tan et al., 2002 [60]
7C  8C—9C  homo—hetero 2 Wu et al., 2005 [61]
7C  9C—7C  homo—hetero 1 Sanchez-Cespedes et al.,
2001 [62]
7C 9C—8C  homo—hetero 4 Legras et al., 2008 [63]
324 C C—-G homo—hetero CR/HV2 2 POLG/MNGIE muscle Del Bo et al., 2003 [59]
386 C C—A homo—homo CR/OHR 1 Bladder Brandon et al., 2006 [64]
441 C C—G homo—homo CR/mtF1 1 None Present study
456 C C—-T homo—homo CR/HV3 1 Thyroid Maximo et al., 2002 [65]
16304 T T—-C homo—homo CR/HV1 1 Esophageal, breast & Brandon et al., 2006 [64]
prostate
16390 G G—A homo—homo CR/HV1 1 Breast, ovarian Bragoszewski et al., 2008
[66]
16519 T T—-C homo—hetero CR/7SDNA 1 Glioblastoma, gastric, Wu et al., 2005 [61]

lung, ovarian, prostate

CRS: Cambridge reference sequence; CSB2: conserved sequence block 2; hetero: heteroplasmic; homo: homoplasmic;

HV: hypervariable; MNGIE: mitochondrial neurogastrointestinal encephalomyopathy; mtTF1: mitochondrial TF1 binding

site; PEO: progressive external ophthalmoplegia; POLG: progressive external ophthalmoplegia OHR: H-strand origin.
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